51 research outputs found

    Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling

    Get PDF
    Automatic algorithms for stent struts segmentation in optical coherence tomography (OCT) images of coronary arteries have been developed over the years, particularly with application on metallic stents. The aim of this study is three-fold: (1) to develop and to validate a segmentation algorithm for the detection of both lumen contours and polymeric bioresorbable scaffold struts from 8-bit OCT images, (2) to develop a method for automatic OCT pullback quality assessment, and (3) to demonstrate the applicability of the segmentation algorithm for the creation of patient-specific stented coronary artery for local hemodynamics analysis

    A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images

    Get PDF
    The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms

    A patient-specific study investigating the relation between coronary hemodynamics and neo-intimal thickening after bifurcation stenting with a polymeric bioresorbable scaffold

    Get PDF
    We present an application of a validated reconstruction methodology for the comparison between patient-specific hemodynamics and neo-intimal thickening at nine months from the intervention. (1) Background: Coronary bifurcation stenting alters the vessel geometry, influencing the local hemodynamics. The evaluation of wall shear stress (WSS) relies on the application of computational fluid dynamics to model its distribution along the coronary tree. The endothelium actively responds to WSS, which triggers eventual cell proliferation to cover the stent struts. (2) Methods: Baseline optical coherence tomography and angiographic data were combined to reconstruct a patient-specific coronary bifurcation with an implanted bioresorbable scaffold and to simulate the hemodynamics. Results were linked with the neo-intimal thickening after nine months from the intervention. (3) Results: Blood velocity patterns were disrupted at the bifurcation due to the presence of the stent. It was observed that 55.6% of the scaffolded lumen surface was exposed to values of time-averaged WSS lower than 0.4 Pa. Follow-up images showed a luminal narrowing of 19% in the main branch. There was also a complete coverage in 99% of struts. (4) Conclusions: This approach provided valuable complementary information that might improve the clinical outcomes in this subset of coronary diseases

    Screening for Tuberculosis in Migrants: A Survey by the Global Tuberculosis Network

    Get PDF
    Tuberculosis (TB) does not respect borders, and migration confounds global TB control and elimination. Systematic screening of immigrants from TB high burden settings and-to a lesser degree TB infection (TBI)-is recommended in most countries with a low incidence of TB. The aim of the study was to evaluate the views of a diverse group of international health professionals on TB management among migrants. Participants expressed their level of agreement using a six-point Likert scale with different statements in an online survey available in English, French, Mandarin, Spanish, Portuguese and Russian. The survey consisted of eight sections, covering TB and TBI screening and treatment in migrants. A total of 1055 respondents from 80 countries and territories participated between November 2019 and April 2020. The largest professional groups were pulmonologists (16.8%), other clinicians (30.4%), and nurses (11.8%). Participants generally supported infection control and TB surveillance established practices (administrative interventions, personal protection, etc.), while they disagreed on how to diagnose and manage both TB and TBI, particularly on which TBI regimens to use and when patients should be hospitalised. The results of this first knowledge, attitude and practice study on TB screening and treatment in migrants will inform public health policy and educational resources

    A Patient-Specific Study Investigating the Relation between Coronary Hemodynamics and Neo-Intimal Thickening after Bifurcation Stenting with a Polymeric Bioresorbable Scaffold

    No full text
    We present an application of a validated reconstruction methodology for the comparison between patient-specific hemodynamics and neo-intimal thickening at nine months from the intervention. (1) Background: Coronary bifurcation stenting alters the vessel geometry, influencing the local hemodynamics. The evaluation of wall shear stress (WSS) relies on the application of computational fluid dynamics to model its distribution along the coronary tree. The endothelium actively responds to WSS, which triggers eventual cell proliferation to cover the stent struts. (2) Methods: Baseline optical coherence tomography and angiographic data were combined to reconstruct a patient-specific coronary bifurcation with an implanted bioresorbable scaffold and to simulate the hemodynamics. Results were linked with the neo-intimal thickening after nine months from the intervention. (3) Results: Blood velocity patterns were disrupted at the bifurcation due to the presence of the stent. It was observed that 55.6% of the scaffolded lumen surface was exposed to values of time-averaged WSS lower than 0.4 Pa. Follow-up images showed a luminal narrowing of 19% in the main branch. There was also a complete coverage in 99% of struts. (4) Conclusions: This approach provided valuable complementary information that might improve the clinical outcomes in this subset of coronary diseases

    Efficacy, safety, and tolerability of a 24-month treatment regimen including delamanid in a child with extensively drug-resistant tuberculosis: A case report and review of the literature

    No full text
    Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) are emerging problems in several countries. These infections require long and expensive treatment regimens. Recently, 2 new drugs, bedaquiline and delamanid, have been approved in several countries for use in adults with severe, difficult-to-treat MDR-TB, and it has been suggested that they could also be administered to children with MDR-TB and limited treatment options. However, no study has been completed on their efficacy
    • …
    corecore